Coercivity properties for order nonsmooth functionals

نویسنده

  • M. Turinici
چکیده

A differential coercivity result is established for a class of order nonsmooth functionals fulfilling an appropriate Palais-Smale condition. The core of this approach is an asymptotic type statement involving such functionals, obtained by means of the monotone variational principle in Turinici [An. Şt. UAIC Iaşi, 36 (1990), 329-352].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Version of Zhong’s Coercivity Result for a General Class of Nonsmooth Functionals

A version of Zhong’s coercivity result (1997) is established for nonsmooth functionals expressed as a sum Φ +Ψ, where Φ is locally Lipschitz and Ψ is convex, lower semicontinuous, and proper. This is obtained as a consequence of a general result describing the asymptotic behavior of the functions verifying the above structure hypothesis. Our approach relies on a version of Ekeland’s variational...

متن کامل

Multiple Solutions for Nonlinear Discontinuous Strongly Resonant Elliptic Problems

We consider quasilinear strongly resonant problems with discontinuous right-hand side. To develop an existence theory we pass to a multivalued problem by, roughly speaking, filling in the gaps at the discontinuity points. We prove the existence of at least three nontrivial solutions. Our approach uses the nonsmooth critical point theory for locally Lipschitz functionals due to Chang (1981) and ...

متن کامل

A Regularization Parameter for Nonsmooth Tikhonov Regularization

In this paper we develop a novel criterion for choosing regularization parameters for nonsmooth Tikhonov functionals. The proposed criterion is solely based on the value function, and thus applicable to a broad range of functionals. It is analytically compared with the local minimum criterion, and a posteriori error estimates are derived. An efficient numerical algorithm for computing the minim...

متن کامل

Critical Point Theory for Nonsmooth Energy Functionals and Applications

In this paper we prove an abstract result about the minimization of nonsmooth functionals. Then we obtain some existence results for Neumann problems with discontinuities.

متن کامل

INFINITELY MANY SOLUTIONS FOR A CLASS OF P-BIHARMONIC PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS

The existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous Neumann boundary conditions. Using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous Neumann boundary conditions, we obtain the result.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011